МУНИЦИПАЛЬНОЕ КАЗЕННОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ЦЕНТР ДЕТСКОГО ТВОРЧЕСТВА» ТЕРСКОГО МУНИЦИПАЛЬНОГОРАЙОНА

Проект

Тема: «Использование технологий 3D – моделирования. «Географическое положение элементов Кавказских гор»

Подготовила:

Болотокова Амина Муаедовна

Руководитель проекта:

Тумов М.Р., ПДО МКУ ДО ЦДТ

Тема: «Географическое положение элементов Кавказских гор»

Введение

Теоретически для построения наилучшей модели требуется, чтобы все необходимые компоненты поступили на рассмотрение одновременно.

Эдвард де Боно

Эти слова принадлежат Британскому психологу и автору 12 книг.

Я согласна с его мнением, так как полный взгляд на ситуацию позволяет работать, отталкиваясь сразу от всех частей информации.

Моделирование в информатике — это составление образа какого-либо реально существующего объекта, который отражает все существенные признаки и свойства.

3D-технологии создания объектов можно использовать практически повсеместно. Вы можете создать расческу, ложку, подставку и т.д. Значительно ускорить строительство и сделать его более доступным и безопасным. С развитием трёхмерных технологий, стало возможно создание большинства частей человеческого тела. Но чаще они используются в стоматологии.

Тема данной проектной работы «*Географическое положений элементов Кавказских гор*» была выбрана мною потому что, я считаю её актуальной и хочу поведать вам о технологии, за которой, на мой взгляд, стоит будущее в свете многообразия её использования.

<u> Цель:</u> Создание модели «Географическое положений элементов Кавказских гор»

- 1. Изучить особенности использования 3D технологий.
- 2. Сравнить технологию создания моделей с использованием 3D-принтера.
- 3. Научиться создавать модели с использованием 3D

<u>Проблема исследовательской работы:</u> Моделирование является современным этапом развития технологий, но при этом мало кто использует эту технологии, из — за её дороговизны и сложности в использовании.

Глава 1. Теоретическая часть

1. Разновидности 3D моделирования

Существует три вида 3D-моделирования:

- каркасное моделирование;
- поверхностное моделирование;
- твердотельное моделирование.

Первый из них, наиболее простой — это каркасное моделирование. Модели, получаемые при создании этого типа, будут называться каркасными. Состоят они из линий, дуг, сегментов и полигонов. Изображения такого типа не передают

полную информацию об объекте, зато с их помощью можно изучить его устройство и функциональность.

Главным преимуществом каркасного моделирования является то, что на хранение трехмерных моделей, созданных этим способом, не требуется много оперативной памяти компьютера. Чаще всего каркасная визуализация применяется в специализированных программах для построения предполагаемой траектории движения устройства или инструмента.

Второй вид 3D-моделирования – это поверхностное моделирование.

В отличие от каркасного, здесь имеются не только сегменты, линии, дуги и полигоны, но и поверхности, образующие контур отображаемого объекта.

Последний, самый точный тип 3D-моделирования, называется «*твердотельное моделирование*». В результате его использования можно получить настоящий образец готового объекта, который передает все данные о нем.

Модель, созданная благодаря этому способу визуального воспроизведения, содержат текстуру. Хотя такие модели занимают наибольший объем памяти компьютера по сравнению с остальными, но они полностью описывает готовый объект.

1. Моделирование при помощи 3D-принтера

3D-принтер — станок с числовым программным управлением, использующий метод послойного создания детали. 3D печать является разновидностью аддитивного производства и обычно относится к инструментам быстрого прототипирования.

Также применяются различные технологии позиционирования печатающей головки:

Декартова, когда в конструкции используются три взаимно-перпендикулярные направляющие, вдоль каждой из которых двигается либо печатающая головка, либо основание модели.

При помощи трёх параллелограммов, когда три радиально-симметрично расположенных двигателя согласованно смещают основания трёх параллелограммов, прикреплённых к печатающей головке.

Автономная, когда печатающая головка размещена на собственном шасси, и эта конструкция передвигается целиком за счёт какого-либо движителя, приводящего шасси в движение.

3D-принтер с вращающимся столиком — использование на одной (или нескольких) осях вращения вместо линейного передвижения.

Назван такой прибор к 3D-принтерам может быть отнесён с известной натяжкой. Существуют варианты с использованием термополимера, застывающего при охлаждении, и с использованием фотополимера, отверждаемого ультрафиолетом.

Слайсер – программа для перевода 3D модели в управляющий код для 3D принтера.

Модель режется (слайстися) по слоям. Каждый слой состоит из периметра и/или заливки.

Модель может иметь разный процент заполнения заливкой, также заливки может и не быть (пустотелая модель).

На каждом слое происходят перемещения по осям XY с нанесением расплава пластика. После печати одного слоя происходит перемещение по оси Z на слой выше, печатается следующий слой и так далее.

Этап 3. Распечатать трафарет на листе A4 (дополнительно можно положить на лист прозрачный прямоугольник из ОРК стекла или температура стойкого пластика для лучшего отклеивания модели).

Заключение

Проведенное исследование позволяет сделать вывод о том, что 3D-печать быстрыми темпами проникает почти во все сферы человеческой деятельности. Технологии 3D-печати дают большие возможности, для воплощения самых экстравагантных идей. Одним из важных преимуществ 3D-печати является экономия времени и средств при производстве объектов различной сложности по сравнению с традиционными способами. Наиболее прогрессивными технологиями создания 3D-печатных объектов являются аддитивные, которые позволяют получить конечный коммерческий продукт. В архитектуре и дизайне актуально 3D-печатное макетирование. Метод 3D-печати напрямую зависит от поставленной автором цели и задачи.

При выполнении данной проектной работы были выполнены следующие задачи:

- Были изучены разновидности 3D-моделирования.
- Были изучены разновидности 3D-принтеров.
- Была создана 3D-модель.

В ходе данной работы я:

- 1. Познакомилась с 3D-моделированием.
- 2. Узнала о разновидностях 3D-принтеров
- 3. Узнала о отличиях и особенностях 3D-принтеров.

Таким образом, поставленные цели и задачи выполнены.